
On group Fourier analysis and symmetry preserving discretizations of PDEs

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 5563

(http://iopscience.iop.org/0305-4470/39/19/S14)

Download details:

IP Address: 171.66.16.104

The article was downloaded on 03/06/2010 at 04:27

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/19
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 5563–5584 doi:10.1088/0305-4470/39/19/S14

On group Fourier analysis and symmetry preserving
discretizations of PDEs

H Z Munthe-Kaas

Department of Mathematics, University of Bergen, Joh Brunsgt 12, N-5020, Norway

E-mail: hans@munthe-kaas.no

Received 12 October 2005, in final form 3 February 2006
Published 24 April 2006
Online at stacks.iop.org/JPhysA/39/5563

Abstract
In this paper we review some group theoretic techniques applied to
discretizations of PDEs. Inspired by the recent years active research in
Lie group- and exponential-time integrators for differential equations, we
will in the first part of the paper present algorithms for computing matrix
exponentials based on Fourier transforms on finite groups. As an example,
we consider spherically symmetric PDEs, where the discretization preserves
the 120 symmetries of the icosahedral group. This motivates the study of
spectral element discretizations based on triangular subdivisions. In the
second part of the paper, we introduce novel applications of multivariate
non-separable Chebyshev polynomials in the construction of spectral element
bases on triangular and simplicial sub-domains. These generalized Chebyshev
polynomials are intimately connected to the theory of root systems and Weyl
groups (used in the classification of semi-simple Lie algebras), and these
polynomials share most of the remarkable properties of the classical Chebyshev
polynomials, such as near-optimal Lebesgue constants for the interpolation
error, the existence of FFT-based algorithms for computing interpolants and
pseudo-spectral differentiation and existence of Gaussian integration rules. The
two parts of the paper can be read independently.

PACS numbers: 02.20.Qs, 02.30.Jr, 02.60.Jh

1. Introduction

As an introductory motivation, we briefly review some recent developments of numerical time
integration based on computing exponentials. A detailed understanding of this introduction is
not necessary for reading the rest of the paper. Classical numerical integrators (e.g., Runge–
Kutta and multistep) assumes an ODE y ′(t) = F(y(t)), where y(t) ∈ Rn and the basic
time-step updates the solution are obtained by translations on Rn. Indeed all classical one-step
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methods are of the form yn+1 = yn +�h,F (yn), where h denotes the timestep and �h,F is given
by the method.

In the last decade, there has been a significant development of numerical Lie group
integrators (LGI) (Iserles et al 2000). These are based on the more general assumption that
the domain of y(t) is a manifold M acted upon transitively by a Lie group G. Let g be the
corresponding Lie algebra and exp: g → G the exponential map. A vectorfield F on M can
be expressed in terms of a map A:M → g as F(y) = A(y) · y (Munthe-Kaas 1989). It is
assumed that the group action p �→ exp(A) · p can be computed accurately and efficiently for
all p ∈ M and A ∈ g. The basic time-step update in many LGI methods is obtained from the
group action as yn+1 = exp(�h,A(yn)) ·yn, where �h,A(yn) ∈ g depends on the particular LGI.
For matrix Lie groups, exp denotes the matrix exponential. As a simple example, consider
y ′(t) = A(y) · y, where A ∈ Rn×n, y ∈ Rn and the action is the matrix-vector product. The
exponentiated Euler method is the simplest possible LGI given as yn+1 = exp(hA(yn)) · yn. If
A is a skew-symmetric matrix, this yields a first-order integrator for equations evolving on a
sphere, where the update is done by the action of the orthogonal rotation matrix exp(hA). The
order theory of high-order LGI is now well understood (Owren 2006). The basic difference
between the classical-order theory and the order theory of LGI arises from the fact that
translations on Rn form a commutative group, whereas more general group actions are non-
commutative. Corrections for non-commutativity is necessary in any LGI of order higher
than 2.

LGI methods enjoy a number of nice geometrical properties, of which we will focus here
on their symmetry and equivariance properties. Fundamental in the theory of differential
equations is the equivariance of the solution curves with respect to any diffeomorphism
φ:M → M acting on the domain. Let φ∗F denote the push forward of the vectorfield F, i.e.
(φ∗F)(z) = T φ ·F(φ−1(z)) for all z ∈ M, where T φ denotes the tangent map (in coordinates
the Jacobian matrix). Then the two differential equations y ′(t) = F(y(t)), y(0) = y0 and
z′(t) = (φ∗F)(z(t)), z(0) = φ(y0) have analytical solution curves related by z(t) = φ(y(t)).
In particular, if φ∗F = F , we say that φ is a symmetry of the vectorfield, and in that case φ

maps solution curves to other solution curves of the same equation.
For numerical integrators, it is in general impossible to satisfy equivariance with respect

to arbitrary diffeomorphisms, since this would imply an analytically correct solution. (There
always exists a local diffeomorphism which straighten the flow to a constant flow in x1

direction, and this is integrated exactly by any numerical method).
The equivariance group of a numerical scheme is the largest group of diffeomorphisms

under which the numerical solutions transform equivariantly. It is known that the equivariance
group of classical Runge–Kutta methods is the group of all affine linear transformations of Rn.
LGI methods based on exact computation of exponentials have equivariance groups which
include the Lie group G on which the method is based, hence if some elements g ∈ G are
symmetries of the differential equation, then G-equivariant LGIs will exactly preserve these
symmetries. However, if the exact exponential is replaced with approximations, care must
be taken in order not to destroy G-equivariance and symmetry preservation of the numerical
scheme. In the case of PDEs, symmetry preservation is also depending on symmetry preserving
spatial discretizations.

In the recent years, there has been a significant interest in the application of LGI and
other exponential-based integrators for solving PDEs (Hochbruck and Lubich 1998, Krogstad
2005). A starting point for many of these methods are differential equations of the form
u′(t) = L(u) + N (u), where L is a stiff linear differential operator, and N is a non-stiff
and non-linear part of the PDE. In important cases, methods based on computing exp(L)

can replace implicit treatment of such stiff PDEs. Of particular interest to us in this paper
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are cases where L commutes with a group of symmetries, so that L(u ◦ g) = L(u) ◦ g for all
g ∈ G. This is a typical situation for many differential operators arising from physical systems
(e.g., the Laplace operator commutes with the group of Euclidean transformations of the
domain).

The paper is organized as follows. In section 2 we will discuss the use of Fourier transforms
on finite groups in the computation of the exponential of discretized linear operators commuting
with a finite group of domain symmetries. In particular, we will discuss the icosahedral
symmetry group, which is the largest finite subgroup of the full group of all rotations of
a sphere. In section 3 we will discuss issues related to spectral element discretizations
with icosahedral symmetries, in particular we will present a novel approach to constructing
high-order bi-variate polynomial bases on triangles. This approach is based on the beautiful
properties of non-separable multivariate Chebyshev polynomials. These polynomials are
constructed by symmetric ‘caleidoscopic’ foldings of Fourier basis functions, and both the
theory and also practical computations (discretizations and FFTs) are depending on group
theoretical ideas.

2. Symmetries and the matrix exponential

The topic of this section is applications of Fourier analysis on groups in the computation
of matrix exponentials. Assuming that the domain is discretized with a symmetry
respecting discretization, we will show that by a change of basis derived from the
irreducible representations of the group, the operator is block diagonalized. This simplifies
the computation of matrix exponentials. The basic mathematics behind this chapter is
representation theory of finite groups (James and Liebeck 2001, Lomont 1959, Serre 1977).
Applications of this theory in scientific computing is discussed by a number of authors, see e.g.
Allgower et al (1992), Allgower et al (1998), Bossavit (1986), Douglas and Mandel (1992),
Georg and Miranda (1992). Our exposition, based on the group algebra, is explained in detail
in Åhlander and Munthe-Kaas (2005), which is intended to be a self-contained introduction
to the subject.

2.1. G-equivariant matrices

A group is a set G with a binary operation g, h �→ gh, inverse g �→ g−1 and identity element
e, such that g(ht) = (gh)t, eg = ge = g and gg−1 = g−1g = e for all g, h, t ∈ G. We let |G|
denote the number of elements in the group. Let I denote the set of indices used to enumerate
the nodes in the discretization of a computational domain. We say that a group G acts on a set
I (from the right) if there exists a product (i, g) �→ ig : I × G → I, such that

ie = i for all i ∈ I, (1)

i(gh) = (ig)h for all g, h ∈ G and i ∈ I. (2)

The map i �→ ig is a permutation of the set I, with the inverse permutation being i �→ ig−1.
An action partitions I into disjoint orbits

Oi = {j ∈ I | j = ig for some g ∈ G}, i ∈ I.

We let S ⊂ I denote a selection of orbit representatives, i.e. one element from each orbit.
The action is called transitive if I consists of just a single orbit, |S| = 1. For any i ∈ I, we
let the isotropy subgroup at i, Gi be defined as

Gi = {g ∈ G | ig = i}.
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The action is free if Gi = {e} for every i ∈ I, i.e. there are no fixed points under the action
of G.

Definition 1. A matrix A ∈ CI×I is G-equivariant if

Ai,j = Aig,jg for all i, j ∈ I and all g ∈ G. (3)

The definition is motivated by the result that ifL is a linear differential operator commuting
with a group of domain symmetries G, and if we can find a set of discretization nodes I such
that every g ∈ G acts on I as a permutation i �→ ig, thenL can be discretized as a G-equivariant
matrix A, see Allgower et al (1998), Bossavit (1986).

2.2. The group algebra

We will establish that G equivariant matrices are associated with (scalar or block) convolutional
operators in the group algebra.

Definition 2. The group algebra CG is the complex vectorspace CG where each g ∈ G
corresponds to a basis vector g ∈ CG. A vector a ∈ CG can be written as

a =
∑
g∈G

a(g)g where a(g) ∈ C.

The convolution product ∗ : CG × CG → CG is induced from the product in G as
follows. For basis vectors g,h, we set g ∗ h ≡ gh, and in general if a = ∑

g∈G a(g)g
and b = ∑

h∈G b(h)h, then

a ∗ b =
∑

g∈G
a(g)g

 ∗
(∑

h∈G
b(h)h

)
=

∑
g,h∈G

a(g)b(h)(gh) =
∑
g∈G

(a ∗ b)(g)g,

where

(a ∗ b)(g) =
∑
h∈G

a(gh−1)b(h) =
∑
h∈G

a(h)b(h−1g). (4)

Consider a G-equivariant A ∈ Cn×n in the case where G acts freely and transitively on
I. In this case there is only one orbit of size |G| and hence I may be identified with G.
Corresponding to A there is a unique A ∈ CG, given as A = ∑

g∈G A(g)g, where A is the
first column of A, i.e.

A(gh−1) = Agh−1,e = Ag,h. (5)

Similarly, any vector x ∈ Cn corresponds uniquely to x = ∑
g∈G x(g)g ∈ CG, where

x(g) = xg for all g ∈ G. Consider the matrix vector product

(Ax)g =
∑
h∈G

Ag,hxh =
∑
h∈G

A(gh−1)x(h) = (A ∗ x)(g).

If A and B are two equivariant matrices, then AB is the equivariant matrix where the first
column is given as

(AB)g,e =
∑
h∈G

Ag,hBh,e =
∑
h∈G

A(gh−1)B(h) = (A ∗ B)(g).

We have shown that if G acts freely and transitively, then the algebra of G-equivariant matrices
acting on Cn is isomorphic to the group algebra CG acting on itself by convolutions from the
left.
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In the case where A is G-equivariant w.r.t. a free, but not transitive, action of G on I,
we need a block version of the above theory. Let Cm×�G ≡ Cm×� ⊗ CG denote the space of
vectors consisting of |G| matrix blocks, each block of size m × �, thus A ∈ Cm×�G can be
written as

A =
∑
g∈G

A(g) ⊗ g where A(g) ∈ Cm×�. (6)

The convolution product (4) generalizes to a block convolution ∗ : Cm×�G × C�×kG →
Cm×kG given as

A ∗ B =
∑

g∈G
A(g) ⊗ g

 ∗
(∑

h∈G
B(h) ⊗ h

)
=

∑
g∈G

(A ∗ B)(g) ⊗ g,

where

(A ∗ B)(g) =
∑
h∈G

A(gh−1)B(h) =
∑
h∈G

A(h)B(h−1g), (7)

and A(h)B(h−1g) denotes a matrix product.
If the action of G on I is free, but not transitive, then I split in m orbits, each of size |G|. We

letS denote a selection of one representative from each orbit. We will establish an isomorphism
between the algebra of G-equivariant matrices acting on Cn and the block-convolution algebra
Cm×mG acting on CmG. We define the mappings µ : Cn → CmG, ν : Cn×n → Cm×mG as

µ(y)i(g) = yi(g) = yig ∀i ∈ S, g ∈ G, (8)

ν(A)i,j (g) = Ai,j (g) = Aig,j ∀i, j ∈ Sg ∈ G. (9)

In Åhlander and Munthe-Kaas (2005) we show:

Proposition 1. Let G act freely on I. Then µ is invertible and ν is invertible on the subspace
of G-equivariant matrices. Furthermore, if A,B ∈ Cn×n are G-equivariant and y ∈ Cn, then

µ(Ay) = ν(A) ∗ µ(y), (10)

ν(AB) = ν(A) ∗ ν(B). (11)

To complete the connection between G-equivariance and block convolutions, we need to
address the general case where the action is not free, hence some of the orbits in I have reduced
size. One way to treat this case is to duplicate the nodes with non-trivial isotropy subgroups,
thus a point j ∈ I is considered to be |Gj | identical points, and the action is extended to a
free action on this extended space. Equivariant matrices on the original space is extended by
duplicating the matrix entries, and scaled according to the size of the isotropy. We define

µ(x)i(g) = xi(g) = xig ∀i ∈ S, g ∈ G, (12)

ν(A)i,j (g) = Ai,j (g) = 1

|Gj |Aig,j ∀i, j ∈ Sg ∈ G. (13)

With these definitions it can be shown that (10) and (11) still hold. It should be noted that µ

and ν are no longer invertible, and the extended block convolutional operator ν(A) becomes
singular. This poses no problems for the computation of exponentials since this is a forward
computation. Thus we just exponentiate the block convolutional operator and restrict the result
back to the original space. However, for inverse computations such as solving linear systems,
the characterization of the image of µ and ν as subspaces of CmG and Cm×mG is an important
issue for finding the correct solution (Åhlander and Munthe-Kaas 2005, Allgower et al 1993).
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2.3. The generalized Fourier transform (GFT)

So far we have argued that a symmetric differential operator becomes a G-equivariant matrix
under discretization, which again can be represented as a block convolutional operator. In
this section we will show how convolutional operators are block diagonalized by a Fourier
transform on G. This is the central part of Frobenius’ theory of group representations from
1897–1899. We recommend the monographs (Fässler and Stiefel 1992, James and Liebeck
2001, Lomont 1959, Serre 1977) as introductions to representation theory with applications.

Definition 3. A d-dimensional group representation is a map R : G → Cd×d such that

R(gh) = R(g)R(h) for all g, h ∈ G. (14)

Generalizing the definition of Fourier coefficients, we define for any A ∈ Cm×kG and any
d-dimensional representation R a matrix Â(R) ∈ Cm×k ⊗ Cd×d as

Â(R) =
∑
g∈G

A(g) ⊗ R(g). (15)

Proposition 2 (The convolution theorem). For any A ∈ Cm×kG, B ∈ Ck×�G and any
representation R, we have

(Â ∗ B)(R) = Â(R)B̂(R). (16)

Proof. The statement follows from

Â(R)B̂(R) =
∑

g∈G
A(g) ⊗ R(g)

(∑
h∈G

B(h) ⊗ R(h)

)

=
∑

g,h∈G
A(g)B(h) ⊗ R(g)R(h) =

∑
g,h∈G

A(g)B(h) ⊗ R(gh)

=
∑

g,h∈G
A(gh−1)B(h) ⊗ R(g) = (Â ∗ B)(R).

�

Let dR denote the dimension of the representation. For use in practical computations, it
is important that A ∗ B can be recovered by knowing (Â ∗ B)(R) for a suitable selection of
representations, and furthermore that their dimensions dR are as small as possible. Note that
if R is a representation and X ∈ CdR×dR is non-singular, then also R̃(g) = XR(g)X−1 is a
representation. We say that R and R̃ are equivalent representations. If there exists a similarity
transform R̃(g) = XR(g)X−1, such that R̃(g) has a block diagonal structure, independent of
g ∈ G, then R is called reducible, otherwise it is irreducible.

Theorem 3 (Frobenius). For any finite group G there exists a complete list R of non-equivalent
irreducible representations, such that∑

R∈R
d2

R = |G|.

Defining the GFT for a ∈ CG as

â(R) =
∑
g∈G

a(g)R(g) for every R ∈ R, (17)
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Table 1. Gain in computational complexity for matrix exponential via GFT.

Domain G |G| {dR}R∈R Wdirect/Wfspace

Triangle D3 6 {1, 1, 2} 21.6
Tetrahedron S4 24 {1, 1, 2, 3, 3} 216
Cube S4 × C2 48 {1, 1, 1, 1, 2, 2, 3, 3, 3, 3} 864
Icosahedron A5 × C2 120 {1, 1, 3, 3, 3, 3, 4, 4, 5, 5} 3541

we may recover a by the inverse GFT (IGFT)

a(g) = 1

|G|
∑
R∈R

dR trace(R(g−1)â(R)). (18)

For the block transform of A ∈ Cm×kG given in (15), the GFT and the IGFT are given
componentwise as

Âi,j (R) =
∑
g∈G

Ai,j (g)R(g) ∈ CdR×dR , (19)

Ai,j (g) = 1

|G|
∑
R∈R

dR trace(R(g−1)Âi,j (R)). (20)

Complete lists of irreducible representations for a selection of common groups are found in
Lomont (1959).

2.4. Applications to the matrix exponential

We have seen that via the GFT, any G-equivariant matrix is block diagonalized. Corresponding
to an irreducible representation R, we obtain a matrix block Â(R) of size mdR × mdR , where
m is the number of orbits in I and dR the size of the representation. Let Wdirect denote
the computational work, in terms of floating point operations, for computing the matrix
exponential on the original data A, and let Wfspace be the cost of doing the same algorithm
on the corresponding block diagonal GFT-transformed data Â. Thus Wdirect = c(m|G|)3 =
cm3

(∑
R∈R d2

R

)3
,Wfspace = cm3 ∑

R∈R d3
R and the ratio becomes

O(n3): Wdirect/Wfspace =
(∑

R∈R
d2

R

)3 / ∑
R∈R

d3
R.

Table 1 lists this factor for the symmetries of the triangle, the tetrahedron, the 3D cube and the
maximally symmetric discretization of a 3D sphere (icosahedral symmetry with reflections).

The cost of computing the GFT is not taken into account in this estimate. There exists
fast GFT algorithms of complexity O(|G| log�(|G|)) for a number of groups, but even if we use
a slow transform of complexity O(|G2|), the total cost of the GFT becomes just O(m2|G|2),
which is much less than Wfspace.

2.4.1. Example: Equilateral triangle. The smallest noncommutative group is D3, the
symmetries of an equilateral triangle. There are six linear transformations that map the
triangle onto itself, three pure rotations and three rotations combined with reflections. In
figure 1(a), we indicate the two generators α (rotation 120◦ clockwise) and β (right–left
reflection). These satisfy the algebraic relations α3 = β2 = e, βαβ = α−1, where e denotes
the identity transform. The whole group is D3 = {e, α, α2, β, αβ, α2β}.

Given an elliptic operator L on the triangle such that L(u ◦ α) = L(u) ◦ α and L(u ◦ β) =
L(u) ◦ β for any u satisfying the appropriate boundary conditions on the triangle, let the domain
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β

α

1

3

5

2

4

6

89

7

10

(a) (b)

Figure 1. Equilateral triangle with a symmetry preserving set of ten nodes.

Table 2. A complete list of irreducible representations for D3.

α β

ρ0 1 1
ρ1 1 −1

ρ2

(−1/2 − √
3/2√

3/2 − 1/2

) ( 1 0
0 − 1

)

be discretized with a symmetry respecting discretization, see figure 1(b). In this example we
consider a finite difference discretization represented by the nodes I = {1, 2, . . . , 10}, such
that both α and β map nodes to nodes. In finite element discretizations, one would use basis
functions mapped to other basis functions by the symmetries. We define the action of D3

on I as

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)α = (5, 6, 1, 2, 3, 4, 9, 7, 8, 10),

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)β = (2, 1, 6, 5, 4, 3, 7, 9, 8, 10),

and extend to all of D3 using (2). As orbit representatives, we may pick S = {1, 7, 10}. The
action of the symmetry group is free on the orbit O1 = {1, 2, 3, 4, 5, 6}, while the points in the
orbit O7 = {7, 8, 9} have isotropy subgroups of size 2, and finally O10 = {10} has isotropy of
size 6.

The operator L is discretized as a matrix A ∈ C10×10 satisfying the equivariances
Aig,jg = Ai,j for g ∈ {α, β} and i, j ∈ S. Thus we have e.g. A1,6 = A3,2 = A5,4 =
A4,5 = A2,3 = A6,1.

D3 has three irreducible representations given in table 2 (extended to the whole group
using (14)). To compute exp(A), we find A = ν(A) ∈ C3×3G from (13) and find
Â = GFT(A) from (19). The transformed matrix Â has three blocks, Â(ρ0), Â(ρ1) ∈ Cm×m

and Â(ρ2) ∈ Cm×m ⊗ C2×2 � C2m×2m, where m = 3 is the number of orbits. We exponentiate
each of these blocks, and find the components of exp(A) using the inverse GFT (20).

We should remark that in Lie group integrators, it is usually more important to compute
y = exp(A) · x for some vector x. In this case, we compute ŷ(ρi) = exp(Â(ρi)) · x̂(ρi), and
recover y by the inverse GFT. Note that x̂(ρ2), ŷ(ρ2) ∈ Cm ⊗ C2×2 � C2m×2.

2.4.2. Example: Icosahedral symmetry. As a second example illustrating the general theory,
we solve the simple heat equation

ut = ∇2u



Symmetry preserving discretizations of PDEs 5571

on the surface of a unit sphere. The programming in this example is done by Trønnes (2005)
in his master thesis.

The sphere is divided into 20 equilateral triangles, and each triangle subdivided in a finite
difference mesh respecting all the 120 symmetries of the full icosahedral symmetry group
(including reflections). To understand this group, it is useful to realize that five tetrahedra can
be simultaneously embedded in the icosahedron, so that the 20 triangles correspond to the
in total 20 corners of these five tetrahedra. From this one sees that the icosahedral rotation
group is isomorphic to A5, the group of all 60 even permutations of the five tetrahedra. The
3D reflection matrix −I obviously commutes with any 3D rotation, and hence we realize
that the full icosahedral group is isomorphic to the direct product C2×A5, where C2 = {1,−1}.
The irreducible representations of A5, listed in Lomont have dimensions {1, 3, 3, 4, 5}, and
the representations of the full icosahedral group are found by taking tensor products of these
with the two one-dimensional representations of C2. The fact that the full icosahedral group
is a direct product is also utilized in faster computation of the GFT. This is, however, not of
major importance, since the cost of the GFT in any case is much less than the cost of the
matrix exponential.

The figures below show the solution of the heat equation at times 0, 2, 5, 10, 25 and 100.
The initial condition consists of two located heat sources in the northern hemisphere.
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This example serves as a simple toy example to check the practical issues of programming
the group-based diagonalization techniques discussed above. In future work, we aim at
solving more interesting equations such as shallow water equations and Euler flow equations
on spherical geometries, using high-order Lie group integrators for the time integration and
high-order spectral element discretizations in the space. For this purpose, we are interested
in spectral element methods based on triangular subdivisions. In the remaining part of this
paper, we will overview a novel approach to this topic, based on families of non-separable
multivariate Chebyshev polynomials obtained from group theory.

3. Multivariate Chebyshev and triangular spectral elements

Bivariate Chebyshev polynomials were constructed independently by Koornwinder (1974)
and Lidl (1975) by folding exponential functions. Multidimensional generalizations (the A2

family) appeared first in Eier and Lidl (1982). In Hoffman and Withers (1988), a general
folding construction was presented. Characterization of such polynomials as eigenfunctions
of differential operators is found in Beerends (1991), Koornwinder (1974). Although the
fundamental mathematical properties of multivariate Chebyshev polynomials are developed
in the above papers, they are to our knowledge not appearing in any works on numerical
analysis, approximation theory nor any other areas of computational science. It is our goal
to show that these polynomials have significant roles to play in computations, similar to the
famous univariate case. A more detailed exposition of the theory of this paper will appear in
Munthe-Kaas (2006).

3.1. Multivariate Chebyshev polynomials: a general construction

To motivate a general construction of multivariate Chebyshev polynomials, we consider the
classical univariate case obtained by ‘folding’ the exponential functions to cosine functions,
and applying a change of variables to turn cosine functions into Chebyshev polynomials.
Define the Fourier basis functions (k, θ) = exp(2πikθ) for θ ∈ G = R/Z = [0, 1) and
k ∈ Ĝ = Z. Let W = {1,−1} be a symmetry group acting on G, and consider the ‘folded’
exponentials

(k, θ)s = 1

|W |
∑
γ∈W

(k, γ θ) = 1

|W |
∑
γ∈W

(γ k, θ) = 1

2
((k, θ) + (−k, θ)) = cos(2πkθ).

Define the change of variables x(θ) = (1, θ)s = cos(2πθ). This defines Chebyshev
polynomials Tk(x) = (k, θ)s for k = {0, 1, . . .}. Note that T0(x) = 1 and T1(x) = x. The fact
that all Tk(x) are polynomials follows from the recursion 2T1(x) · Tk(x) = Tk+1(x) + Tk−1(x),
which is a special case of (29). It should be noted that the beautiful computational properties of
Chebyshev polynomials, such as existence of FFT-based fast algorithms, recursion relations,
orthogonality (continuous and discrete) and excellent interpolation properties can all be
explained in terms of group theory and can be generalized to multivariate cases.

Let G = Rd/Zd denote a d-dimensional domain, one-periodic in each direction, thus
〈G, +〉 is an Abelian (commutative) group where + denotes componentwise addition modulo
1. Let Ĝ = Zd denote the Abelian group of d-dimensional integer vectors, and define the dual
pairing (·, ·): Ĝ×G → C as

(k, θ) = exp(2π ikT θ) (21)

satisfying

(k, θ + θ ′) = (k, θ) · (k, θ ′), (k + k′, θ) = (k, θ) · (k′, θ). (22)
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Note that {(k, ·): k ∈ Ĝ} is the Fourier basis on G (a complete list of irreducible
representations), while {(·, θ): θ ∈ G} is the Fourier basis on Ĝ, thus G and Ĝ are dual
Abelian groups (Rudin 1962).

Let W ⊂ Zd×d be a finite group of integer matrices, defining a left action θ �→ γ θ on G
and a right action kT �→ kT γ on Ĝ. Define the symmetrized Fourier basis

(k, θ)s = 1

|W |
∑
γ∈W

(k, γ θ) = 1

|W |
∑
γ∈W

(γ T k, θ), (23)

and introduce a change of variables

xj (θ) = (ej , θ)s, (24)

where ej = (0, . . . , 1, . . . , 0)T and j ∈ {1, . . . , d}. We define a family of functions

Tk(x) = (k, θ)s for k ∈ Ĝ. (25)

We will impose enough structure on W to ensure that Tk(x) form a complete family of d-variate
polynomials, which we will call the multivariate Chebyshev polynomials associated with W .

First some properties that hold regardless of W . From the definition it follows immediately
that Tk(x) satisfy

T0(x) = 1 (26)

Tej
(x) = xj (27)

Tk(x) = Tγ T k(x) for all γ ∈ W . (28)

The mother of all recurrence relations between Tk(x) is the following:

Tk(x)T�(x) =
∑
m∈Ĝ

αk,�(m)Tm(x) =
∑
m∈S

|mT W |αk,�(m)Tm(x), (29)

where S denotes a selection of one element from each orbit of W in Ĝ and |mT W | denotes
the size of the orbit represented by m ∈ S. The function α is given by a convolution

αk,�(m) = 1

|W |2
∑ ∑

γ,η∈W

δγ T k+ηT �,m, (30)

where δ is the Kronecker-δ. To understand (29), recall the convolution formula for the
(Abelian) Fourier transform ̂(fg)(k) = (f̂ ∗ ĝ)(k) = ∑

m∈Ĝ f̂ (k−m)ĝ(m), where f, g ∈ CG

and f̂ , ĝ ∈ CĜ. The Fourier transform of Tk(x(θ)) is

T̂ k(m) = 1

|W |
∑
γ∈W

δγ T k,m,

and by defining

αk,�(m) = T̂kT�(m) = (T̂k ∗ T̂�)(m), (31)

we obtain (30). Due to symmetry, it is sufficient to sum over just one element in each W-orbit
and scale with the size of the orbit.

The reader is encouraged to verify that (29) implies the common recurrence among
classical Chebychev polynomials in the case where d = 1 and W = {1,−1}.

A trivial example of these formulae is obtained when d = 1 and W = {1}. In this case we
get x = exp(2πiθ), Tk(x) = xk for k ∈ Z, and (29) becomes Tk(x) · T�(x) = Tk+�(x). Thus
Tk are not polynomials when k < 0, because W is too small and lacks symmetries sending
negative k to positive. On the other hand, if W is too large, then {Tk(x)} may not generate the
full space of all multivariate polynomials, but just certain linear combinations of these.

In the following section we will introduce the Weyl groups W associated with root systems.
These groups are just the right size to guarantee that {Tk(x): k ∈ S} form complete bases for
the space of multivariate polynomials.
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3.2. Root systems and Weyl groups

A root system is a subset 
 of a Euclidean space E = Rd such that

(i) 
 is finite, spans E and does not contain 0.
(ii) If α ∈ 
 then the only multiples of α in 
 are ±α.

(iii) If α ∈ 
 then the reflection σα = I − 2ααT

αT α
leaves 
 invariant.

(iv) If α, β ∈ 
 then 2 αT β

αT α
∈ Z.

The (finite) group generated by the reflections W = 〈σα | α ∈ 
〉 is called the Weyl group.
The integer linear combination of all the roots α ∈ 
 is called the root lattice �r . The affine
Weyl group is the group generated by W and all the translations in the root lattice.

A root system always has a basis, defined as d linearly independent vectors {α1, . . . , αd} ⊂

 so that any α ∈ 
 can be written as α = ∑d

j=1 cjαj , where cj ∈ Z are either all non-negative
or all non-positive. αj are called the simple roots. We let

A = (α1, . . . , αd)

denote the matrix with columns formed by the simple roots, hence �r = {A · κ: κ ∈ Zd}.
Given any lattice � ⊂ Rd , we define the dual lattice �⊥ ⊂ Rd as the set of all vectors

whose inner-product with vectors in � yield integer values, thus �⊥
r = {A−T · κ: κ ∈ Zd}. A

well-known result of Fourier analysis is that periodization of Rd with respect to a lattice � is
equivalent to restricting the Fourier coefficients to the dual lattice �⊥.

According to the general construction of section 3.1, we construct the Chebyshev
polynomials Tk(x) from 
 as follows:

• Primal and dual spaces: The root lattice �r defines a periodic domain Rd/�r . Via the
basis A for �r , this domain is isomorphic to G = Rd/Zd . Using the dual basis A−T , the
Fourier space becomes Ĝ = Zd .

• Weyl group: Using the A basis, the group W becomes a group of integer matrices acting
on G. We find σαi

A = Aσ̃i , where σ̃i is the integer matrix

σ̃i = I − eie
T
i C,

and C is the Cartan matrix of the root system, defined as

Cj,� = 2
αT

j α�

αT
j αj

.

Thus, from the Cartan matrix of the root system, we immediately find the integer matrices
{σ̃i}di=1 generating the Weyl group W . Given W , we construct the Chebyshev family
{Tk(x): k ∈ S}.

• Fundamental domain in Ĝ: It can be shown that a selection of orbit representatives can
always be taken as the first quadrant of Ĝ = Zd , i.e.

S = {k ∈ Zd : ki � 0 for all i}.
Furthermore, there exists a partial ordering ≺ on S such that the monomials can be written
as

xk = x
k1
1 · · · xkd

d = ckTk(x) +
∑
�∈S
�≺k

c�T�(x) for ck, c� ∈ C, ck �= 0 .

Hence {Tk(x): k ∈ S} is a basis for the space of multivariate polynomials.
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• Fundamental domain in G: Let � denote the fundamental domain of W acting on G.
The domain � has a simple characterization in terms of A and C. If the root system is
irreducible, then � is always a simplex, and for reducible root systems, � becomes a
Cartesian product of the fundamental domains for each of the irreducible components of

, see Munthe-Kaas (2006) for details. It can be shown that the coordinate map θ �→ x

is invertible between � and the codomain δ = x(�). The Jacobian of x(θ) is nonsingular
inside � and singular on the boundary. It is important to note that while � are simplexes,
this is not the case for the transformed domain δ = x(�). This poses challenges for the
construction of spectral element bases that we will address in the case A2 in section 3.4.

• Continuous orthogonality: The exponentials are orthogonal under the standard inner
product on G, and therefore the symmetrized exponentials are orthogonal on �. Thus the
Chebyshev polynomials satisfy a continuous orthogonality∫

δ

Tk(x) · T�(x)ω(x) dx = 0 for k, � ∈ S, k �= �,

where ω(x) is the Jacobian determinant of the coordinate map x(θ). For the 1D case,
ω(x) = (2π

√
1 − x2)−1 (the normal Chebyshev weight function scaled with 2π ).

• Discrete orthogonality: For fast computations, it is important to find a good discretization
of � ⊂ G. Up to a band-limit, the exponentials (k, θ) are orthogonal with on a uniform
lattice in G, and uniform lattices provide Gaussian integration rules for the exponentials
(with equal Gaussian weights). For the symmetrized exponentials, we need a lattice
which is invariant under W . One such lattice with maximal symmetries is obtained by
downscaling the root lattice with an integer factor m = k|C|. We include the determinant
of the Cartan matrix to ensure that the lattice contains both the root lattice, and also the
weights lattice, which are all the points with maximal symmetry under the action of the
affine Weyl group on Rd (Humphreys 1970). Let �m ⊂ G denote the down-scaled root
lattice, restricted to �. Since G is expressed in terms of the basis A, this becomes

�m =
{
θ ∈ �: θ = κ

m
, κ ∈ Zd

}
.

The symmetrized exponentials (k, θ)s satisfy a discrete orthogonality on �m, where the
Gaussian weight in a point θ is proportional to the size of the orbit |Wθ |. Thus the
Chebyshev polynomials satisfy orthogonality under the discrete inner product

〈Tk(x), T�(x)〉m = 1

c

∑
θ∈�m

|Wθ | · Tk(x(θ)) · T�(x(θ)),

where c = |W |∑θ∈�m
|Wθ |. The Gaussian quadrature formula∫

x∈δ

f (x)ω(x) dx ≈ c
∑
θ∈�m

|Wθ |f (x(θ))

is exact whenever f (x) = Tk(x), k �= mκ for some 0 �= κ ∈ Zd . The formula fails if k is
in the dual lattice (�r/m)⊥, except k = 0, since these Tk alias to T0 on �m. It should be
noted that our lattice �m is a generalization of Chebyshev–Gauss–Lobatto points in 1D
(i.e., Chebyshev extremal points, with half weights on the boundary points). We can also
generalize Chebyshev–Gauss points (zeros of Chebyshev polynomials) by using lattices
obtained by taking appropriate cosets of the downscaled root lattice.

To complete this section, we want to characterize all root systems, and present the
irreducible cases in 2D. A root system is called reducible, if the roots can be separated into
two sets, such that the roots in one subset is orthogonal to all the other roots. Any root
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Figure 2. Dynkin diagrams.

system can be decomposed into irreducible components, and it is sufficient to study these. If a
root system can be decomposed, then the corresponding fundamental domains become tensor
products of the corresponding irreducible subdomains, and all the Chebyshev polynomials
become tensor products of Chebyshev polynomials on the irreducible components. Thus
the standard construction of the tensor product Chebyshev bases on box-shaped domains
corresponds to a root system which can be completely decomposed into 1D roots.

Irreducible root systems are uniquely characterized in terms of their Dynkin diagrams,
figure 2. These diagrams have one node for each simple root αj ∈ �. The only possible
angles between the simple roots are 90◦, 60◦, 45◦ or 30◦. We draw no line between the nodes
if the corresponding simple roots are orthogonal, one line if the angle is 60◦, two lines for 45◦

and three lines for 30◦. Roots may come in different lengths, but in an irreducible root system,
there are at most two different lengths of the roots. To indicate short and long roots an arrow
is inserted in the diagram, thus on the left of < are the short roots, on the right the long ones.
The 2D irreducible root systems are shown in figure 3.

The sequence of diagrams A1, A2, A3,D4,D5, E6, E7 and E8 are of particular interest
in sampling theory. The root lattices corresponding to these are known to be the densest
lattice packings in spaces of dimensions 1–8 (Conway and Sloane 1988). Suppose we seek a
sampling lattice A on Rd so that the Euclidean distance in the Fourier space between 0 and the
closest non-zero point in the dual lattice A⊥ is some given constant c, i.e. we seek a sampling
exact on ‖k‖2 < c band limited functions. How can we choose such a lattice A with the lowest
sampling density? The solution is: choose a lattice from the sequence above! To explain
this, we note that all these lattices are self-dual (dual of same type). In the Fourier space,
maximizing grid density |A−T |−1 (for a given lattice constant c) is equivalent to minimizing
the density |A|−1 in primal space. For dimensions 2, 3, 4 and 5, going from a rectangular to
optimal grid saves 13%, 29%, 50% and 65% of the gridpoints.

3.3. Chebyshev expansions and symmetric FFTs

The (infinite) Chebychev expansion of a well-behaved function f (x) defined for x ∈ δ is
given as

f (x) =
∑
k∈S

|kT W |f̂ (k)Tk(x),

where f̂ ∈ CĜ is the Fourier transform of f (x(θ)) considered as a symmetric function in
CG. If we restrict x to the finite set {x(θ): θ ∈ �m}, then we obtain a finite interpolating
Chebyshev series of the form
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Rootsystem B2Rootsystem A2

Rootsystem G2

Figure 3. Irreducible root systems in 2D. The irreducible 2D root systems given by A2, B2 and
G2, corresponding to fundamental domains � ⊂ G given as equilateral triangle, 45◦ − 45◦ − 90◦
triangle and 30◦ − 60◦ − 90◦ triangle (yellow colour). Blue dots are the roots, blue arrows the
simple roots, red dots the weights lattice and red arrows the fundamental dominant weights, the
dotted lines are the mirrors in the affine Weyl group and the black dots indicate a downscaling of
the root lattice by a factor m = 12. The parallelograms show the periodicity of the root lattice, and
hence the fundamental domain of the (unsymmetrized) Fourier basis.

f (x(θ)) =
∑
k∈Sm

|kT W |f̂ (k)Tk(x(θ)).

Sampling at m-downscaled root lattice can be described as going from the continuous Abelian
group G to the finite subgroup Gm = Zd

m. In the Fourier space, the sampling is described
by going from the infinite group Ĝ to the finite quotient Ĝm = Ĝ/mĜ � Zd

m. The finite set
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Sm ⊂ S denotes the fundamental domain of the right action of W on Ĝm, see Munthe-Kaas
(2006) for details.

Computationally the discrete Chebyshev interpolation problem is solved by computing a
symmetric discrete Fourier transform f �→ f̂ . A simple solution to this problem is just to
form the full symmetrized f ∈ CGm, computing f̂ with a standard FFT, and restrict the result
to Sm. The cost is 5N log2(N) real flops, where N = md .

In Munthe-Kaas (1989), we provide group theoretic symmetric FFTs that can utilize all
the symmetries in W and real symmetry in f . A related approach is found in Puschel and
Rötteler (2004). A group theoretical explanation of the classical Cooley–Tukey algorithm is
the result that if H < G (subgroup of Abelian group) then Ĥ = Ĝ/H⊥. So, the Cooley–Tukey
algorithm can be generalized to any subgroup decomposition. The sequence

G|C| < G2|C| < · · · < G2k |C|

preserves all the symmetries in W . Symmetries may be lost in the cosets, but in that case two
different cosets will be identified by a symmetry. By carefully using all the symmetries both
in primal space and in the Fourier space, we obtain an algorithm saving a factor 2|W | both
in flops and in storage with respect to the full non-symmetric complex FFT. The cost of the
symmetrized algorithm is 5

2M log2(M), where M = |�m| is the number of lattice points in
the fundamental domain.

3.4. The Chebyshev A2 family

Of the three non-separable cases in 2D, the A2 family is the most promising for building
spectral elements. In the other two cases, the shape of the domains δ seem less suitable for
patching.

3.4.1. Symmetry, recurrence and coordinate transformation. For A2, we have simple roots
and the Cartan matrix is given as

A =
(

2 −1
0

√
3

)
, C =

(
2 −1

−1 2

)
.

The action of W on G = R2/Z2 is generated by σi = I − eie
T
i C,

σ1 =
(−1 1

0 1

)
, σ2 =

(
1 0
1 −1

)
,

yielding a group with in total |W | = 6 elements. In general, the Chebyshev polynomials
satisfy the symmetries T−k = Tk and Tγ T k = Tk for all γ ∈ W, k ∈ Ĝ. Thus, when W does
not contain the inversion θ �→ −θ , then Tk(x) and the coordinates xi(θ) are complex. In the
A2 case

x1(θ) = 1
3 (e2π iθ1 + e−2π iθ2 + e2π i(θ2−θ1)), x2(θ) = x1(θ).

It is convenient to replace these with the real coordinates

xre = 1
2 (x1 + x2) = 1

3 (cos(2πθ1) + cos(2πθ2) + cos 2π(θ1 − θ2)) (32)

xim = 1
2 (x1 − x2) = 1

3 (sin(2π iθ1) − sin(2π iθ2) − cos 2π i(θ1 − θ2)). (33)

Let z = x1, z = x2, and write Tm,n for Tk where k = (m, n)T . We find the recurrences

T−1,0 = z, T0,0 = 1, T1,0 = z (34)
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(a) (b)

Figure 4. The equilateral domain � maps to the Deltoid δ under coordinate change.

Tn,0 = 3zTn−1,0 − 3zTn−2,0 + Tn−3,0 (35)

Tn,m = (3Tn,0Tm,0 − Tn−m,0)/2. (36)

The fundamental domains of W are in the primal space � ⊂ G the triangle limited by
(0, 0),

(
1
3 , 2

3

)
,
(

2
3 , 1

3

)
(the yellow triangle in figure 3(a)), and in the Fourier space S ⊂ Ĝ is the

first quadrant of Z2. Under the discretization to �m in the primal space, we find in the Fourier
space Sm to be the quadrilateral with vertices in (0, 0), (m/2, 0), (m/3,m/3), (0,m/2). By
also invoking the conjugation symmetry Tm,n = Tn,m, we can reduce the fundamental domain
in the Fourier space to the triangle (0, 0), (m/2, 0), (m/3,m/3). The polynomials T�,� are all
real, while the polynomials Tk for k on the line (m/2, 0), (m/3,m/3) are real on the lattice
�m. All the other Tk are complex.

In figure 4, we see the domain �12 and its image δ under change of variables (32) and (33).
The domain δ is a shape known as the deltoid, or 3-cusp Steiner hypocycloid. It has many
characterizations, and many interesting geometrical properties. The deltoid was introduced
by L Euler in 1745 in a study of caustic patterns in optics, figure 5(a). The deltoid can also
be drawn using a spirograph. Let a circle of diameter 2/3 roll inside a circle of diameter
1. Then the diameter of the inner circle fills the interior of the deltoid, figure 5(b). A line
of constant length can be rotated inside the deltoid, so that it always touches all the three
sides of the deltoid. Another property of the deltoid, which is interesting for approximation
theory, is the fact that the straight lines of � pointing in the directions θ1, θ2 and θ1 + θ2 are
mapped to straight lines in δ. In δ, these lines cross in points which are located as either
1D Gauss–Chebyshev points or Gauss–Chebyshev–Lobatto points. Other lines in � are not
mapped to straight lines. We see for instance that the red triangle in � is mapped to the circle
in δ, and importantly the green hexagon in � is mapped to a perfectly inscribed equilateral
triangle in δ.

3.4.2. Approximation properties. For using Chebyshev A2 in spectral elements, we must
overcome the problem that Tk naturally lives on the deltoid and not triangles. We will discuss
two approaches; either to straighten the deltoid to a triangle, or patching together deltoids with
overlap.
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Figure 5. (a) A sunbeam refracted in a bathroom mirror. (b) Spirograph drawing.

(a) (b)

Figure 6. (a) Straightened deltoid. (b) Deltoid circumscribing arbitrary triangle.

Any straightening map from δ to a triangle must have singularities in the corners of δ,
but can otherwise be well-behaved. We have constructed several different maps. A simple
coordinate map taking x(θ) ∈ δ to [t1, t2]T in an equilateral triangle, is given as

d = [1 − cos(π(2θ1 − θ2)), 1 − cos(π(2θ2 − θ1)), 1 + cos(π(θ1 + θ2))]
T (37)[

t1

t2

]
=

[−1/2 −1/2 1
−√

3/2
√

3/2 0

]
· d/‖d‖1, (38)

The vector d represents the distances from x to the three sides of δ, measured along the
three natural straight lines through x. In (38), these three numbers are taken as barycentric
coordinates on an equilateral triangle with vertices given by the columns of the matrix. The
resulting straight triangle is shown in figure 6(a).
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Figure 7. (a) Lebesgue function on deltoid. (b) Lebesgue function on straightened triangle.

Patching deltoids with overlap is an attractive alternative. The deltoid has the remarkable
property of circumscribing any triangle such that each side of the triangle is tangent to a side
of the deltoid, figure 6(b). It is not difficult to match nodes in two different patches along the
naturally straight lines of the deltoid.

We want to numerically study the quality of interpolation on the deltoid and the
straightened deltoid. Approximation theory on triangles is far less developed than on separable
domains, and very little is known about choice of good interpolation points on triangles.
Hesthaven (1998) has studied generalizations of Stieltjes electrostatic characterization of
Jacobi–Gauss–Lobatto points from 1D to 2D, and produced interpolation points by numerical
computations. In Taylor et al (2000), Fekete interpolation points are found by maximizing
a Vandermonde determinant in a numerical optimization, see also Bos (1983), Chen and
Babuska (1995), Fekete (1923). Fekete triangle points and icosahedral subdivisions of the
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Figure 8. Lebesgue constants for various nodal points on the triangle and deltoid. Bottom curve:
points x(�m) on deltoid. All other curves: interpolation on triangle, from top: uniform points;
Hesthaven electrostatic points; x(�m) straightened to triangle (37)–(38); Fekete points.

sphere is used for nodal based spectral element discretizations of shallow water equations in
Giraldo and Warburton (2005).

The quality of a set of interpolation points I can be measured by the Lebesgue constant,
defined as L = ‖I‖∞, where I is the (multivariate) interpolation operator in the given nodes.
Slow growth of the Lebesgue constant is necessary for spectral convergence. Uniform points
typically show exponential growth. Points with the minimal Lebesgue constant are called
Lebesgue points, but there are no known algorithm for computing these. It is known that the
Lebesgue constant for the optimal Lebesgue points grow logarithmically in the number of
points. For the 1D Chebyshev–Lobatto points, it is known that the Lebesgue constant grows
logarithmically. The proof can be generalized to our points x(�m) ⊂ δ, so probably these
points have near optimal interpolation properties. It is not known if the same property holds
for the interpolation points in the straightened deltoid.

Numerically, we can compute the Lebesgue constant by computing the Lebesgue function

λ(x) =
∑
i∈I

|�i(x)|,

where �i(x) is the Lagrangian cardinal polynominal at node i. After computing λ(x) on a
very fine lattice, we find the Lebesgue constant taking the maximum: L = ‖λ(x)‖∞. Figure 7
shows the Lebesgue constants on the deltoid and straightened triangle. In figure 8, we see
Lebesgue constants for various choices of interpolation points.
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The interpolation points on the deltoid show excellent behaviour. Even when m = 60,
yielding 631 nodal points and polynomials of degree 35, the Lebesgue constant is 9.1, and the
condition number of the Chebyshev Vandermonde matrix is just 3.6.

The Lebesgue constant for the nodal points on the straightened triangle are also good.
The growth of these seems to be faster than logarithmic, but they are better then the Hesthaven
points and not much worse than the Fekete points, which requires optimization algorithms
to be found. We believe that the Chebyshev-based nodal points are suitable for constructing
high-order spectral element bases.

A final remark on triangular interpolation. The nodal-based triangular spectral elements
used in Giraldo and Warburton (2005), Hesthaven (1998) are based on a number of interpolation
points given as (q+1)(q+2)/2. This corresponds to the number of monomials in the triangular-
truncated monomial basis {xrys : r + s � q}. The number of nodal points in �m is instead
given as the centred triangular numbers

|�m| = 1
2m(m/3 + 1) + 1.

The linear space in which we do our interpolation and computation of Lebesgue constants is
the space spanned by the Chebyshev polynomials Tk(x) for k ∈ Sm. In this space, the lower
monomials xrys are linearly independent, while the highest monomials appear only in certain
linear combinations. We cannot see that this fact introduces any practical problems for the
construction of spectral element bases.

4. Concluding remarks

A recurring theme in this paper has been applications of (finite) symmetry groups in the
discretization and solution of PDEs. Group theory provides us with a unified framework for
developing discretizations, fast algorithms and software. For triangle-based spectral elements,
we believe that methods based on the non-separable multivariate Chebyshev polynomials
type A2 are very promising because of both the excellent approximation properties of these
polynomials and the availability of fast transforms and Gaussian quadrature rules. Similarly,
we believe that the A3 family and the A2 × A1 families are useful for 3D computation.
Furthermore, we hope that a combination of equivariant spectral element discretizations in
the space, and exponential integrators in time will yield competitive algorithms for important
classes of large scale computational problems.

However, there are still obstacles to overcome in order to make such group-based tools
available in the toolbox of computational scientists. One problem is the lack of the literature
focused on applications of group theory in computations. The other problem is the lack
of software. It is our conviction that the group theoretical framework enables us to produce
general software packages for dealing with discrete versions of Chebyshev polynomials related
to any Dynkin diagram. These are issues to be addressed in future work.
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